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ABSTRACT

This paper presents an analytical method of modelling eddy currents inside axial bearings.
The problem is solved by dividing an axial bearing into elementary geometric forms, solving the
Maxwell equations for these simpli�ed geometries, de�ning boundary conditions and combining
the geometries. The �nal result is an analytical solution for the 
ux, from which the impedance
and the force of an axial bearing can be derived. Several impedance measurements have shown
that the analytical solution can �t the measured data with a precision of approximately 5%.

INTRODUCTION

Modelling magnetic bearings is necessary to achieve reasonable results for magnetic force
and bearing losses in order to design bearings and ampli�ers. Furthermore, controller design
is based on a model of the plant including magnetic bearings. Magnetic bearings are usu-
ally modelled as equivalent electrical circuits. With simple models neglecting eddy currents,
hysteresis, saturation and material nonlinearities, it is possible to achieve approximations for
the magnetic force which are su�cient for most applications. Nevertheless, better modelling
can improve bearing design and system behaviour. For some applications such as self sensing
bearings a more precise model is necessary.
The absolute permeability � describes the relationship between the magnetic 
ux density B
and the magnetic �eld strength H (see equation (5)). The relative permeability �r is material
dependent, the permeability of vacuum �0 is constant. For simple models �r can be assumed to
be constant, but for real materials �r depends on the magnetic �eld strength (i.e. �r = �r(H)).
With increasing magnetic �eld strength the gradient � decreases (to a limit value �0). There-
fore, the magnetic 
ux density is nearly constant for high �eld strengths (saturation). While
increasing and decreasing H, the 
ux density B has di�erent values for forward or backward
loops due to hysteresis of the material. There are complex mathematical models such as the
Preisach model [May91] to describe hysteresis, but these do not have an analytical solution.
Changing magnetic �elds inside conducting materials cause currents to 
ow. These eddy cur-
rents have a large in
uence on the behaviour of magnetic bearings. The main goal of this paper
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is to achieve an analytical description of a bearing model including eddy currents. Nonlinear
material behaviour is considered in numerical calculations. Hysteresis is neglected in this paper.
For elementary geometric forms, analytical solutions for eddy currents can be found. These
solutions are su�cient to describe the behaviour of axial bearings. The elementary geometric
forms are a semi-in�nite plate, a rotationally symmetric plate and a semi-in�nite cylinder.

ELEMENTARY GEOMETRIC FORMS

Electromagnetic �elds and, therefore, eddy currents also can be described using Maxwell's
equations ([K�up90], [Jac83]). In order to achieve analytical solutions it is necessary to divide
an axial bearing into elementary geometric forms. Contrary to numerical results analytical
solutions can be more useful for bearing and controller design. Finite Element analysis can
solve two or three-dimensional problems and more complex geometric forms. These numerical
calculations are therefore used to verify analytical results and simpli�cations.
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(1) Semi-in�nite cylinder
(2) Rotational symmetric plate
(3) Air gap
(4) Coil with N turns

Figure 1: Cross section of an axial bearing. The bearing is divided into elementary forms.

Maxwell's Equations

Considering that the frequencies of the currents and �elds are su�ciently low so that we can
neglect the displacement current @D=@t, Maxwell's equations can be written as

curlE = �
@B

@t
= �

dB

dH

@H

@t
(1)

curlH = J (2)

divB = 0 (3)

Here E is the electric �eld strength and J the current density. The generalized Ohm's law,
with the electric conductivity � is given by:

J = �E (4)

The material equation is:
B = �0�rH = �H (5)
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Combining equations (1), (2), (4) and (5) we obtain:

curl(curlH) = ���
@H

@t
(6)

A sinusoidal variation of the �elds enables the transformation of equation (6) into the Fourier
space. @=@t can be replaced by j! giving:

curl(curlH) = �j!��H = ��2
H (7)

where:

� =
q
j!�� = (1 + j)

r
!��

2
(8)

Maxwell's equations (2) and (3) can be integrated using the theorems of Stokes and Gauss
(�: magnetomotive force , �: magnetic 
ux) to give:

� =
Z
@A

Hds =
X
I +

Z
A

JdA (9)

� =
Z
@V

BdA (10)

In the following sections, solutions for the elementary geometric forms semi-in�nite plate,
rotational symmetric plate and semi-in�nite cylinder are given.
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Figure 2: Cross section of
(a) a semi-in�nite plate, (b) a rotational plate, (c) a semi-in�nite cylinder

Semi-in�nite Plate

A very long plate with thickness d and a magnetic �eld only in the z-direction has an eddy
current 
ow in the x-direction. Equation (7) leads to the following di�erential equation:

curl

0
@ 0

0
Hz

1
A =

0
B@

@Hz

@y

0
0

1
CA =

0
@ Jx

0
0

1
A (11)
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curl

0
B@

@Hz

@y

0
0

1
CA =

0
B@

0
0

�
@2Hz

@y2

1
CA =

0
@ 0

0
��2Hz

1
A (12)

@2Hz

@y2
= �2Hz (13)

with the general solution:
Hz(y) = c1e

�y + c2e
��y (14)

Jx(y) =
@Hz

@y
= c1�e

�y
� c2�e

��y (15)

Rotational Symmetric Plate

curl

0
@ Hr

0
0

1
A =

0
B@

0
@Hr

@z

0

1
CA =

0
@ 0

J'
0

1
A (16)

curl

0
B@

0
@Hr

@z
0

1
CA =

0
B@

�
@2Hr

@z2

0
1

r
@
@r

�
r @Hr

@z

�
1
CA =

0
@ ��2Hr

0
0

1
A (17)

Equation (17) represents the following two di�erential equations:

@2Hr

@z2
= �2Hr (18)

1

r

@Hr

@z
+
@2Hr

@z@r
= 0 (19)

The solution for the di�erential equations (18) and (19) can be found by separation of the
variables:

Hr(r; z) = R(r)Z(z) (20)

Equation (18) can be transformed to:

@2Z

@z2
= �2

Z (21)

with the general solution:
Z(z) = z1e

�z + z2e
��z (22)

Equation (19) can be transformed to:

1

r
R +

@R

@r
= 0 (23)
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with the general solution:

R(r) = r1
1

r
(24)

Equation (22) and (24) lead to:

Hr(r; z) =
1

r
(c1e

�z + c2e
��z) (25)

Without regard for r, equation (25) is similar to equation (14) (the case of the semi-in�nite
plate).

Semi-in�nite Cylinder

curl

0
@ 0

0
Hz

1
A =

0
B@

0
�

@Hz

@r

0

1
CA =

0
@ 0

J'
0

1
A (26)

curl

0
B@

0
�

@Hz

@r

0

1
CA =

0
B@

0
0

�
1

r
@
@r

�
r @Hz

@r

�
1
CA =

0
@ 0

0
��2Hz

1
A (27)

@2Hz

@r2
+
1

r

@Hz

@r
� �2Hz = 0 (28)

The substitution �r = �r transforms the di�erential equation (28) into Bessel's equation:

�r2
@2Hz

@�r2
+ �r

@Hz

@�r
� �r2Hz = 0 (29)

with the general solution:
Hz(�r) = c1I0(�r) + c2K0(�r) (30)

or written without substitution:

Hz(r) = c1I0(�r) + c2K0(�r) (31)

Here, I0 is the modi�ed Bessel function of �rst type and zeroth order and K0 is the modi�ed
Bessel function of second type and zeroth order. More detailed information can be found in
[AS65]. For calculations with Bessel functions, especially with complex arguments, a power
series expansion is necessary. A solution without Bessel functions is therefore desirable.
It can be clearly seen that equation (31) leads to equation (14) when Ri � d (Ri: inner radius
of the cylinder). A numerical comparison of the results for equation (31) and equation (14)
shows that the di�erence between these two equations is only signi�cant for unrealistically small
values of Ri (Ri < d).

An analysis of the cases of the semi-in�nite cylinder and the rotational symmetric plate shows
that these cases can be described with the equations of the semi-in�nite plate. The problem of
eddy currents in a semi-in�nite plate is well known in the literature ([Sto74], [K�up90]), because
the choice of lamination thickness is important for high power transformers and electrical
machines.
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BOUNDARY CONDITIONS

Solutions of di�erential equations require de�nitions of boundary conditions. Current �eld
lines have to be closed. This is valid for eddy currents too. It is therefore assumed that eddy
currents in a semi-in�nite plate turn back at in�nity. Eddy currents 
ow in one direction at
one edge and in the other direction at the second edge (see �gure 3 (a)). This solution is given
in the literature ([Sto74], [K�up90]).
For a semi-in�nite cylinder a second solution is possible. Contrary to a plate, a cylinder is
geometrically closed and therefore eddy currents can 
ow in one direction (see �gure 3 (b)).
Calculations with the Finite Element program FEMAG ([Ins94]) produce this solution by de-
fault.

d

Ri

x

y

Jx

Jx

Case (a): A cylinder with an intersection.
Eddy currents 
ow in two directions.

d

Ri

x

y

Jx

Case (b): A cylinder without an intersection.
Eddy currents 
ow in one direction.

Figure 3: The two di�erent boundary conditions. Cylinders with or without intersection.

Cylinder with intersection

The constants c1 and c2 of equations (14) and (15) can be found by de�ning two boundary
conditions. The �rst boundary condition is given by

Hz(�
d

2
) = H0 (32)

The second boundary condition can be derived using Kirchho�'s law. The sum of all the
currents has to be 0.

d

2Z

�

d

2

Jx(y)dy = 0 (33)

Equation (33) can be written as:

Hz(
d

2
) = Hz(�

d

2
) (34)
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The solutions for Hz, Jx and the 
ux � with the boundary condition of a cylinder with
intersection are as follows (A is the area of the cross section of a cylinder):

Hz(y) = H0

cosh(�y)

cosh(� d
2
)

(35)

Jx(y) = �H0

sinh(�y)

cosh(� d
2
)

(36)

� =
Z d

2

�

d

2

BdA = �
A

d

Z d

2

�

d

2

Hz(y)dy = A�H0

tanh(� d
2
)

� d
2

(37)

−2 0 2

x 10
−3

0

20

40

60

80

y [m]

A
bs

(H
) 

[A
/m

]

−2 0 2

x 10
−3

0

0.5

1

1.5

2

2.5
x 10

5

y [m]

A
bs

(J
) 

[A
/m

^2
]

| f = 0.1 Hz
- - f = 1 Hz
- � f = 10 Hz

Figure 4: jHz(y)j and jJx(y)j for a cylinder with intersection.

Figure 4 shows the decrease of the H-�eld in the middle of the core and the increase of eddy
currents near the surface of the core with increasing frequency. The following model parameters
have been used.

d = 6 � 10�3 m
A = 1:39 � 10�3 m2

�0 = 4� � 10�7 H=m
�
r

= 5000
H0 = 79:6 A=m
B0 = �0�r

H0 = 0:5 T

� = 2 � 107 (
m)
�1

Cylinder without intersection

In the case of a cylinder without intersection the start and end of the plate are �xed together
and therefore eddy currents can have closed �eld lines and 
ow in one direction (the opposite
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direction of the coil current).1 The eddy current density at the outer surface of the core is zero.

c1 and c2 in equations (14) and (15) can be found by de�ning two boundary conditions. The
�rst boundary condition is given by:

Hz(�
d

2
) = H0 (38)

The second boundary condition is given by:

Jx(
d

2
) = 0 (39)

The solutions forHz, Jx and � with the boundary condition of a cylinder without intersection
are

Hz(y) = H0

cosh(� d
2
� �y)

cosh(�d)
(40)

Jx(y) = �H0

sinh(� d
2
� �y)

cosh(�d)
(41)

� = A�H0

tanh(�d)

�d
(42)
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Figure 5: jHz(y)j and jJx(y)j for a cylinder without intersection

Figure 5 shows the decrease of the H-�eld near to the outer surface of the core and the
increase of eddy currents near to the inner surface of the core with increasing frequency. The
model parameters of the preceding section have been used.

1The unidirectional eddy current 
ow reminds us of a transformer with a shorted secondary winding. With
the transformer equation, a model for eddy currents would be very simple. A transformer however has two
windings and one core. Currents 
ow inside the windings and the core is only used as a magnetic material. An
axial bearing has one winding and the core has two functions (for conducting and as a magnetic material). The
transformer equation therefore would lead to an unacceptable error.
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Comparison of the two boundary conditions

The generalized form of the 
ux equation can be written as:

� = �0

tanh(
)



(43)

with �0 = A�H0 and with 
 = � d
2
: : : �d.

10
−2

10
0

10
2

10
4

0

0.5

1
x 10

−5

f [Hz]

A
bs

(p
hi

) 
[V

*s
]

Figure 6: j�(f)j
| cylinder without intersection
- - cylinder with intersection

A comparison of the 
ux equations (36) and (42) shows that 
 is two times larger for
unidirectional than for bidirectional eddy currents. Figure 6 shows the frequency dependent

ux for both cases with the same �0.
The 
ux bandwidth of bidirectional eddy currents is 4 times higher (see �gure 6). This does
not correspond to measurements which only show a factor of 2. This di�erence is caused by
the frequency dependence of �0.
In the case of bidirectional eddy currents, �0 is constant for all frequencies. The H-�eld only
changes inside the core and the boundary conditions at the surface of the core remain the same.
This leads to frequency independance of the global H-�eld.
For unidirectional eddy currents the boundary conditions change at the surface of the core.
This leads to a global change of the H-�eld and, therefore, to a change of �0. In order to
achieve analytical solutions it is necessary to expand the problem of modelling eddy currents
with the problem of modelling inductances. Calculation of inductances can be done for simple
geometric setups, but for complex geometries such as axial bearings analytical models are not
available.
Several measurements have shown that the 
ux curves are similar for both eddy current cases.
Therefore, the equations for bidirectional eddy currents can be used for unidirectional eddy
currents too. It is clear that axial bearings with screw-holes or other gaps have uni- and
bidirectional eddy currents and, therefore, the 
ux curve is between the two extreme eddy
current cases.
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ELECTRICAL MODEL AND FORCES

The last boundary value H0 can be found by closing the magnetic circuit. In order to build
the complete magnetic circuit di�erent materials have to be combined. Solutions for the 
ux
are independent from the depth of the core (i.e. from the z-direction). Di�erent materials lead
to di�erent solutions. It is clear that the 
ux changes in a transition region from one solution
to the other. Finite Element analysis is used to calculate the 
ux distribution in a transition
region between di�erent materials. Figure 7 shows that the 
ux in the air gap is homogeneous
even for high frequencies and that the transition region in the iron is small. Combining several
materials is possible because the 
ux density distribution inside one material has little in
uence
on the 
ux density distribution inside the next material.

Figure 7: The 
ux inside the air gap is homogeneous even with a highly nonhomogeneous 
ux
inside the unlaminated core (f = 1KHz).

For calculations with eddy currents, it is useful to de�ne the cut-o� frequency fg of the 
ux
decrease inside the core. In the literature fg is called the cut-o� frequency of the lamination
(see also [K�up90]).

fg =
1

���d2
(44)

Axial bearing materials normally have either a very low fg (unlaminated iron) or a very high
fg (laminated iron, special magnetic core materials such as Corovac2 and air (fg;air !1)).I

Hdl =
nX

m=1

Hmxm = NI (45)

� =
Z
BmdAm = Am�0�r;mHm

tanh(
m)


m
(46)

2Corovac is a high frequency core material with � � 5 � 105S/m and �r � 130. The �r of Corovac is low
compared to ferrite cores which are used for high frequency transformers. The machinability of Corovac is
however much better.

10



Solving the system of equations (45) and (46) leads to the 
ux equation (for n di�erent
materials):

� =
�0NI

nP
m=1

xm
�r;mAm


m
tanh(
m)

(47)

The modelling of axial bearings cannot be improved using more than two terms of the sum.
The �rst term represents all materials with low fg and the second term includes all materials
with a behaviour as air (fg is very high and tanh(
m)=
m = 1). This simpli�cation is based
upon the fact that a connection of two materials with similar fg leads to:

a1
tanh(
1)


1
+ a2

tanh(
2)


2
� a3

tanh(
3)


3
(48)

The reduced 
ux equation is:

� =
�0NAI

2x+
lfe
�r



tanh(
)

= �0NAI
1

2x

1

1 + 1
afe



tanh(
)

(49)

with:

afe = �r
2x

lfe
(50)

All areas are normalized to the area of the air gap A. x is the length of the air gap (including
lengths of materials with very high fg) and lfe is the length of the unlaminated core.

Saturation

In the previous calculations �r has been assumed to be constant. Saturation of the magnetic
material leads to a limit value for the 
ux. The solution for the 
ux therefore gives unre-
alistically high values at the surface. Even with simple models for saturation (e.g. Fr�ohlich
model [Sto74]), it is not possible to derive an analytical solution for the di�erential equations.
Numerical calculations have shown that the behaviour of the H-�eld with saturation is very
similar to the behaviour without saturation. It is therefore not necessary to include saturation
into a model for eddy currents.

Equivalent Electrical Circuit

When x is assumed to be constant, the impedance of an eddy current a�ected coil can be
written as:

Z =
U

I
=

N d�
dt
I

= j!L0

1

1 + 1
afe



tanh(
)

(51)

with:

L0 = �0N
2A

1

2x
(52)

11



Forces

The magnetic force is proportional to the square of the 
ux. Therefore a reduction of the

ux due to eddy currents will also reduce the force to:

F =
�2

�0A
=

K

4

I2

x2
1�

1 + 1
afe



tanh(
)

�
2

(53)

with:
K = �0N

2A (54)
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Figure 8: Normalized force dynamics jF=FDC j of an axial bearing (fg � 0:02Hz, afe � 200)

NONLINEAR PARAMETER IDENTIFICATION

Parameter Identi�cation

It is clear that the impedance of a coil not only depends on the inductance a�ected by
the eddy currents. An impedance model must also include the coil resistance Rcu, the coil
inductance Lcu and the coil capacitance Ccu (see �gure 9). The last two parameters are necessary
to model the frequency range above 10kHz. Thus, the total impedance is:

Rcu Lcu

Ccu Z

I

U

Figure 9: Complete equivalent electrical circuit
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Ztot =
1

j!Ccu

jj(Z +Rcu + j!Lcu) (55)

Robustness of the identi�cation can be improved by de�ning the constraints. The authors
used the constraint algorithm from the MATLAB Optimization Toolbox. The parameter range
described below is su�cient to approximate all measured axial bearings. Less stringent con-
straints are possible, but computational time increases.
All parameter ranges excluding Rcu are written with exponential notation. The �tting al-
gorithm therefore �ts the exponent of the parameters. This method avoids the value 0 and
guarantees convergence.

The ranges of the �tted parameters are given below.

Rcu = 0 : : : 2 

Ccu = 1 � 10�12 : : : 1 � 10�9 F
Lcu = 1 � 10�6 : : : 1 � 10�3 H
L0 = 1 � 10�3 : : : 1 � 100 H
afe = 1 � 100 : : : 1 � 103

fg = 1 � 10�3 : : : 1 � 101 Hz
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Figure 10: Example 1: Axial bearing with unlaminated core and target.
- - : calculated data, | : measured data
Identi�ed parameters: Rcu � 1:5
; Ccu � 800pF; Lcu � 120�H;L0 � 12mH; afe � 3; fg � 7Hz

13



10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

f [Hz]

ab
s(

Z
_t

ot
) 

[O
hm

]

10
1

10
2

10
3

10
4

10
5

10
6

20

30

40

50

60

f [Hz]

ph
as

e(
Z

_t
ot

) 
[D

eg
re

e]

Figure 11: Example 2: Axial bearing with a Corovac core and an unlaminated target.
- - : calculated data, | : measured data
Identi�ed parameters: Rcu � 0:4
; Ccu � 150pF; Lcu � 120�H;L0 � 1:4mH; afe � 150; fg �
0:12Hz

The �tting error e is approximately 5% with the usual air gap and increases up to 10% when
the air gap is small and the 
ux is saturated and is given by:

e =

vuut1

n

nX����1� Zfit

Zmeas

����
2

(56)

where n is the number of measured values, Zfit the �tted impedance and Zmeas the measured
impedance.

Losses

The spectral losses of an axial bearing are given by:

P = real(Uconj(I)) = jU j2real(conj
�

1

Ztot

�
) (57)

Figure 12 shows normalized loss based on impedance measurements of an axial bearing with
a Corovac core. At low frequencies losses are very high due to Rcu. With increasing frequency
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losses decrease. It is therefore useful to choose the switching frequency of an ampli�er as high
as possible. As mentioned in section Comparison of the two boundary conditions, a radial
intersection of an axial bearing can increase the bandwidth of the 
ux and leads to lower losses.
It is only su�cient to intersect unlaminated parts of the core with low fg, i.e. in most cases the
axial bearing target. An axial bearing without intersection su�ers more than 40% higher loss
than one with intersection at frequencies typically used for switching ampli�ers (20 - 200 kHz).
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Figure 12: upper plot: normalized losses Pn = P=juj2 of an axial bearing with Corovac core
and steel target (| P1: target intersected , - - P2: target not intersected )
lower plot: relative di�erence between the two curves of the upper plot Pr = (P2 � P1)=P1

Measurement

Measurements of axial bearing impedances are made with a LCR-meter (HP 4284A) includ-
ing a power current source (HP 42841A). The LCR-meter has the possibility to measure with
logarithmically sweeped frequencies from 20Hz up to 1MHz. A host computer controls the
measurement via GPIB-interface.
The power current source allows measurements of very high inductances and can superpose the
measurement signal with a DC-bias current of up to 20A.

CONCLUSIONS

A model for eddy currents in axial bearings has been derived which can describe the be-
haviour for a wide frequency range. From the analytical solution for the 
ux, the impedance,
the magnetic force and the losses can be calculated. Measurements have shown that the model
is very precise.
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