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Abstract

The balancing of an inverted pendulum with a robot is a
good example for analyzing fast sensor guided movements
and testing modern control strategies. This classical bench-
mark is difficult to achieve as it attempts to stabilize a sys-
tem that is unstable in its open loop configuration.
Additionally, there are sensing problems (measuring very
small angles) and nonlinear effects in the actuators (fric-
tion and elasticity of the gears).
The pendulum is projected to the xz- and yz-plane of the
inertial coordinate system. These projections are treated
independently from each other and are controlled individu-
ally by a state space controller in the x- and y-axis respec-
tively. The nonlinearities of the robot are compensated by
using inverse dynamics and inverse kinematics.
A specially developed sensor system allows the contactless
measurement of the angles. This system consists of a small
magnet, placed at the bottom of the pendulum, and hall
effect sensors placed inside the end effector.

1. Introduction

A robot balancing an inverted pendulum is an impressive
demonstration object, that shows the performance achieved
by an intelligent combination of modern control algorithms,
robotics and electronics. Therefore it is a typical product
emerging from mechatronics aspects. The system realiza-
tion requires the design of a state space controller, calcula-
tion of the inverse kinematics and dynamics, and the
development of specialized signal processing electronics
due to measure the inclination angle of the pendulum.

The following single pendulum setups with increasing
requirements to the control task are known:

• A pendulum with 1 dof (degree of freedom) mounted on
a base rotating around the z-axis [1]. This setup is simi-
lar to the classical one described below but the direct
drive allows higher accelerations with less friction
effects.

• A pendulum with 1 dof mounted on a linear slide
[2],[3],[4]. This is the classical setup with a well known
mechanical model.

• A pendulum with 2 dof mounted on a robot with deco
pled or weak coupled links [5]. At least one link can b
moved without affecting the position of the other link
The separation of the balancing planes can be done 
ily.

• A pendulum with 2 dof mounted on a robot wit
strongly coupled links. The balancing planes have to
separated in order to get a reasonable controller or
But in contrast to previous setup the remaining nonli
ear coupling terms require a more robust control sy
tem.

In publications, the balancing of the inverted pendulum
often used as plant for modern control strategies such
fuzzy control [1], high-and-low gain approach [2], nonlin
ear control [4] and neural networks [5]. These modern str
egies often base on linear control structures but encl
overlaid auto-tuning or adaptive controllers.

Either control of the stable or the instable equilibrium po
tion can be done. It is obvious, that the control of an op
loop instable system is more difficult than the control of
stable one. However control of a stable pendulum is use
in view of good transient behavior. Such a control tak
part of industrial applications, for example the control 
cranes [6]. Additional difficulties are given with a secon
degree of freedom and when rotational drives instead of 
ear drives are used. 

The system described in this paper is based on a SCA
robot Fig. 1. Due to this setup the balancing planes 
strongly coupled. Additionally the robot uses harmon
drive joints and therefore its drives have high friction an
elasticity. All this nonlinearities of the system are difficu
to model. The goal of this paper is to compensate as m
as possible of these nonlinearities and to design a rob
linear control.

Furthermore a unique sensor system has been develo
allowing a contactless and invisible measurement of 
angles of the pendulum. The sensor system is built up w
hall effect sensors.



er-
 of
e
ith
rs,
nd
n
with
2. Experimental Setup

The robot is a SCARA type one with 2 dof. It is controlled
by a VME-Bus system based on a 68040 processor and uses
two 90W DC motors coupled with harmonic drive1 gears as
actuators. The complete controller software is written in
Oberon2, using XOberon as cross development system.

The pendulum can be placed on the end effector without
any attachment. Its angles are measured by hall effect sen-
sors placed inside of the end effector.

Fig. 1: Experimental setup – SCARA robot balancing the
inverted pendulum.

3. Mechanical Model

3.1. Pendulum

Fig. 2: Projection of the pendulum to the xz- and yz-plane.

The pendulum is projected to the xz- and yz-plane of the
inertial coordinate system as shown in Fig. 2. These projec-
tions are considered as coupled pendulums inside two
orthogonal planes. Their inertias ,  can be described

1. Harmonic drives are light, free from play and have a high ratio 
(50-200) but with high friction and elasticity

2. Oberon is an object oriented programing language developed 
at the ETH

as functions of their lengths ,  or their inclination
angles , with respect to the origin.

(1)

(2)

Assuming that the range of α and β is within , the
variation of these inertias is less than 6.3%. Therefore the
variations of the following parameters are substitutable:

(3)

(4)

After this simplification the projections are considered as
two uncoupled pendulums in different planes, which can be
controlled individually. The calculation of the motion eqns.
(5), (6) for planar pendulums is straight forward and has
been carried out in the literature, so it is not necessary to
repeat this task.

(5)

(6)

Assuming that α and β are small, these two eqns. (5), (6)
can be linearized. Finally the following reduced equations
(7), (8) can be obtained.

(7)

(8)

Symbols:
• m : Mass of the pendulum

• l : Length of the pendulum

• J : Inertia of the pendulum

• g : Acceleration due to gravity (9.81 ms-2)

3.2. Robot

The model of the robot consists of the geometrical prop
ties of the machine (lengths of the arms: , ; centers
gravity of the arms: , ), the inertias ,  and th
masses ,  of the arms as shown in Fig. 3. W
respect to the high transmission ratio ,  of the gea
the inertias ,  of the drives can’t be neglected a
therefore are part of the model too. A strong frictio
requires an accurate model of the gears and is modeled 
two nonlinear functions  and
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. The friction parameters are determined
in the following chapter.

Fig. 3: Model of the robot.

The kinematics of this robot are expressed by the following
two equations:

(9)

(10)

The inverse kinematics for the joint accelerations  are
evaluated from the equations (9) and (10). The result is a
function of the joint angles , the joint velocities  and the
accelerations in x- and y-direction.

(11)

The dynamics of the robot is calculated by using the
method of Lagrange. It can be represented by the following
notation:

(12)

where:
•  : Mass matrix

•  : Coriolis and centrifugal terms

•  : Friction, elasticity and damping terms

•  : Vector of joint forces, torques

3.3. Friction

The use of harmonic drives allows to build small, light and
high ratio gears but they deliver an unpleasant friction. This
frictional force is heavily dependent on the actual gear’s
position and the history of the gear’s movement. In order to
model the friction, it was measured by applying a constant
torque to the joints. After a few seconds a constant velocity

has ensued. The relation between torque and velocity of
gear was recorded several times and is shown in Fig. 4.

Fig. 4: Friction measurements.

These measurements show some of the bad consiste
therefore the mean value is taken from these measurem
for each joint. Afterwards the resulting curve is approx
mated by a polygon composed of 5 straight lines as sho
in Fig. 5.

Fig. 5: Approximation of the friction.

These approximations are used in the dynamic compen
tion. The result of this model based compensation is sho
in Fig. 7.

4. Control Strategy

A linear controller design requires a sufficiently linearize
system. The use of a SCARA robot, which has strong
coupled joints, needs an adequate compensation inside
full work space. The geometrical nonlinearities are co
pensated with the inverse kinematics; the remaining non
earities, due to the coupling of the joints, are reduced by 
use of the following dynamic compensation.

4.1. Dynamic Compensation of the Robot

The dynamics of the robot can be approximated with t
following motion equation:

(13)
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Assuming that Equation (13) represents an adequate model
of the robot, the dynamic nonlinearities can be compen-
sated as shown in the block diagram of Fig. 6.

Fig. 6: Dynamic compensation.

Applying this block diagram leads to a system with  as
system input and the complete nonlinear system can be
approximated as shown in (14).

(14)

Fig. 7 shows a measurement of the joint accelerations 
and the inputs  of the dynamic compensation. It can be
seen, that the mean deviation between  and  is smaller
than 10%.

Fig. 7: Result of the dynamic compensation.

There are mainly two reasons for the remaining differences
of the curves. First, there are unmodeled coupling effects
from one joint to the other one. Second, friction effects at
zero velocity of the joints are very noisy, which results in a
high frequency oscillation of the measured joint accelera-
tions. As it is difficult to improve the model of the friction,
the curves of Fig. 7 must be seen as the limit, what can be
reached with the dynamic compensation. Further work will

be done, where a control loop tries to minimize the differ-
ence between desired and real acceleration. Therefore the
joint accelerations are measured with acceleration sensors.
Preliminary results of such a setup have shown, that the
precision can be improved by a factor of two.

4.2. Control Structure

As seen in chap. 3.1. the two-dimensional pendulum can be
approximated by two one-dimensional pendulums pro-
jected into two cartesian planes (xz-plane and yz-plane).
Each one-dimensional pendulum has its own controller.
The outputs of the controllers are the desired accelerations

 and  for the origin of the pendulum. The inverse kine-
matics (11) converts these accelerations into desired joint
accelerations  and , which are used by the dynamic
compensation (Fig. 6) to calculate the desired joint torques

 and  of the robot. The complete system structure is
shown in Fig. 8.

Fig. 8: Closed loop control system.

4.3. State space controller

As the robot is linearized with the inverse kinematics and
with the dynamic compensation, the motion eqns. (7) and
(8) represent an adequate control system description of the
plant. In Fig. 9 the structure of the plant and of a state space
controller is shown. With respect to the identical structure
of both controllers, in the following only the controller for
the pendulum inside the xz-plane will be discussed. 

Fig. 9: State space controller of an one-dimensional pendu-
lum.

The control of the states  and would be sufficient for
the balancing of a pendulum. Due to the restricted work
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space, the states  and  have to be controlled too. This
leads to a state space representation of 4th order as shown
in (15).

(15)

(16)

where:

   

The 4th order controller is realized as a state space control-
ler with the feedback matrix . The design method was a
Ricatti (LQR). The controller needs to be designed in such
a way, that the time response of the inclination angle α of
the pendulum has higher dynamics than the time response
of the robot position x. But it should be noticed, that a very
slow dynamics of the robot position let the robot reach its
work space limits. The optimal dynamics of these two parts
has to be found experimentally. 

The stationary behavior of the inclination angle α visual-
ized in the phase plane (α, ) is a stable limit cycle. Stabil-
ity is given, when the trajectory is rotating into the right
side. The diameter of the limit cycle is related to the quanti-
zation of the measurement of the angle α, i.e. higher resolu-
tion can improve the control quality.

Fig. 10: Phaseplane of α, stable limit cycle with an angle-
resolution of 0.003 rad.

5. Sensors

One of the elementary problems to solve was the measure-
ment of the two angles of the pendulum. A sensor is
required, which measures absolute angles, which gives a
good resolution for very small angular displacements and
which is not fixed to the pendulum. 

Absolute measurement of the angle is desirable, because
there is normally no reference to calibrate the sensor. A rel-
ative measuring system such as an incremental encoder
needs a start up procedure to define the zero position of the
angle. 

Within a range of  the sensor must have an acceptable
resolution. The controller provides the derivative of this
angular signal for estimating the rotational velocity of the
pendulum. With a low resolution of the angular measure-
ment, the resolution of the velocity becomes very bad and
the controller will not be able to stabilize the pendulum.

Measurement systems such as incremental encoders or
potentiometers would be fixed to the pendulum. Techni-
cally this would not cause any problems. For an observer
however, it might appear unclear, how the system works.
Often the question was asked, if this thing – the incremen
encoder – which looks like a motor, is holding the pend
lum vertically! The show is much better, when the pend
lum is not fixed to the robot.

During the development of the system, three types of s
sors were tested and the following observations were ma

5.1. Potentiometer

It was easy to build a two dimensional measurement s
tem, as a normal joystick could be modified. The electric
signal output from the potentiometer for small angles w
very noisy and the controller was not able to balance 
pendulum. Therefore this measuring method was not us

5.2. Encoder

The best controller performance (robustness and diam
of the limit cycle) was reached with a high resolutio
encoder (4096 pulses per ). The large disadvantag
this method is the painful start-up procedure while findin
the equilibrium position of the pendulum. 

The resolution of the angular velocity is low, but can b
increased with special hardware, which allows the interp
tation of the period of time from one encoder pulse to t
next one.

5.3. Hall Sensor

A permanent magnet, placed inside the pendulum, gen
ates a static magnetic flux field. In the case of static fiel
all aluminum parts behave nonmagnetically as does the
and don’t damp the flux distribution. The flux lines whic
cut the sensor produce an electrical signal. A different
evaluation of the two hall effect sensors gives a signal p
portional to the inclination angle.

The signal quality of the hall effect sensor is not as good
from an incremental encoder, but good enough to bala
the pendulum. The free standing nature of the measur
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system gives the impression, that the pendulum is really
balanced by the robot.

Fig. 11: Cross section of pendulum and sensor.

• 1: pendulum (aluminum tube)

• 2: permanent magnet

• 3: vertex (steel)

• 4: mounting plate (aluminum)

• 5: magnetic flux

• 6: two hall effect sensors

• α: inclination angle of the pendulum

The contactless mounting of the pendulum has one disad-
vantage. When the robot or the floor vibrates, the pendulum
tends to jump out of its notch.

6. Conclusions

The goal of the work described in this paper is the theoreti-
cal analysis and the practical realization of a robot balanc-
ing a 2 dof pendulum. The setup robot with two rotational
axes and a 2 dof pendulum is unique. Comparable experi-
ments are limited to linear drives or the balance of a 1 dof
pendulum.

Based on a useful system reduction, a compensator for the
robot’s and the pendulum’s nonlinearities could be imple-
mented, i.e. the forward and inverse kinematics, the com-
pensation of the dynamics and the gear frictions are
calculated at each sampling interval by the controller.
Finally a robust working experimental apparatus was real-
ized.

The sensing problem of measuring the inclination angle of
the pendulum was solved by using a contactless measuring
setup based on hall effect sensors inside the end effector
and a permanent magnet inside the pendulum.

Fig. 12: Movie of the Inverted Pendulum
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