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Abstract: This paper presents an analytical model of

a radial magnetic bearing with which magnetic �elds,

forces and losses are calculated. When an unlaminated

rotor rotates in a radial magnetic bearing, eddy currents

are caused to ow inside the conducting material of the

rotor. These eddy currents change the magnetic �eld of

the radial bearing and, therefore, the forces on the rotor

depend on the eddy currents. Additionally to the levita-

tion force, a tangetial force acts on the rotor. This tan-

gential force causes a retardation torque which has been

measured for many magnetic bearing systems. When the

rotor is excited, the tangential force additionally leads

to a cross coupling between the x and y axis which may

destabilize the system. It will be shown that the forces

and losses of a radial bearing depend on the pole con-

�guration. It can be seen that the con�guration NSNS

has smaller losses than NNSS. The analytical results pre-

sented in this paper correspond with measurements [8].

Nomenclature

b length of a radial bearing

B magnetic ux density

E electric �eld strength

F force

H magnetic �eld strength

J current density

R radius of the radial bearing

U circumference of the rotor

v velocity

x; y; z coordinate directions

� penetration depth

� air gap


 rotational speed

� conductivity

� permeability

1 Introduction

Normally aerodynamic drag causes the largest loss in a

rotating rotor but under vacuum condition eddy current

losses are dominant. Due to the reduced heat transfer

in a vacuum, an adequate model of eddy current losses

is desirable.

An analytical solution has some advantages compared

with numerical results achieved with Finite Element

analysis because it gives a better insight into the prob-

lem. Furthermore, numerical calculations for radial

bearings often do not succeed. In order to achieve a

correct and stable numerical result a small grid width

and a large number of elements is necessary. For higher

velocities (rotational speeds) the number of elements in-

creases rapidly and it may reach computational limits

[1], [3].
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Figure 1: Cross-section of a radial magnetic bearing

Changing magnetic �elds inside conducting materials

cause eddy currents to ow. When a rotor rotates in

a radial magnetic bearing the direction of magnetic ux

density in the air gap changes from +B̂0 (north pole N)

to �B̂0 (south pole S). Outside of the pole regions the

magnetic ux density is zero. This changing magnetic

�eld therefore induces eddy currents in the ferromagnetic

and electrically conductive rotor. These currents respec-

tively induce magnetic �elds, which change the original



�eld.

The model in this paper is two dimensional and, there-

fore, it can only be used for unlaminated rotors. The

magnetic ux density distribution is approximated with

Fourier series. With this model the magnetic �elds,

forces and losses are calculated. The results achieved

in this paper can be veri�ed with measurements of the

retardation torque and the eddy current losses.

The model for a radial magnetic bearing with eddy cur-

rents is similar to models used for the analysis of mag-

netically levitated vehicles (MAGLEV) but the bound-

ary conditions are di�erent [13]. A more adequate ap-

proach, which is also used in this paper, is given in [9]

and [2].

2 Model
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Figure 2: A moving conducting medium under the ap-

plied ux density B0.

For the following calculations, all magnetic poles of the

radial bearing are assumed to be identical. In order to

solve Maxwell's equations it is necessary to de�ne ap-

propriate boundary conditions.

The magnetic ux density at the boundary between the

stator and the air gap is assumed to be constant (�B̂0)

and the applied ux density is periodic. Conductivity

and permeability are assumed to be constant. Satura-

tion and hysteresis e�ects are neglected.

Another assumption is that the magnetic �eld and the

induced currents tend to concentrate at the surface of

the rotor. When the penetration depth � of the mag-

netic �eld is small compared with the diameter of the

rotor the error using cartesian coordinates (x; y) instead

of cylindrical coordinates (r; ') is small.

� =

r
2

��

(1)

The rotational speed 
 can then be replaced by the ve-

locity vx = 
=R. Hence the problem of a rotor rotating

in radial bearings can be approximated by a semi-in�nite

conducting plate moving under magnetic poles.

3 Fourier Approximation

In the �rst step, the ux density B0 will be approximated

by a Fourier series (see [6]).

B0 =

1X
n=1

An cos(knx) +Bn sin(knx) (2)

=

1X
n=1

An + iBn

2
eiknx +

An � iBn

2
e�iknx (3)

=

1X
n=1

Cne
iknx + �Cne

�iknx (4)

with kn = 2�n=U = n=R.

0 4 8 12 16 20 24 28
0

0.25

0.5

n
ab

s(
A

n 
+

 i 
B

n)
 [T

]

NNSS

0 4 8 12 16 20 24 28
0

0.25

0.5

n

ab
s(

A
n 

+
 i 

B
n)

 [T
]

NSNS

Figure 3: Fourier series of the two radial magnetic bear-

ing con�gurations (NNSS and NSNS).
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Figure 4: Approximated ux density B0(x) of a NNSS

and a NSNS radial magnetic bearing con�guration.

Dashed line: approximated ux density using 30 har-

monics, solid line: original ux density.



Comparing the two Fourier series in �gure 3 it can be

seen that the con�gurations NNSS and NSNS (see �gure

4) have di�erent harmonic ux density components An

and Bn. The �rst component of the Fourier series for

the con�guration NSNS is of higher order than for the

con�guration NNSS. Therefore, it is often supposed that

NNSS leads to smaller losses than NSNS but measure-

ments [8] show the opposite behaviour. In [7] a simple

model is presented which con�rms the common meaning

without calculating the magnetic �elds and forces. On

the other hand the Fourier series for the con�guration

NNSS has more harmonic components than the con�g-

uration NSNS. It is clear that the question as to which

con�guration leads to higher losses cannot be answered

without an adequate model.

4 Magnetic Fields

In this chapter all calculations will be shown for one

term Ceikx of the harmonic components of the boundary

conditions (see equation 4).

Maxwell's equations without time variant �elds (i.e.

@B=@t = 0 and @D=@t = 0) can be written as

r�E = 0 (5)

r�H = J (6)

The material equation is:

B = �H = �0�rH (7)

Ohm's law is given by:

J = � (E + v �B) (8)

Equations 5 - 8 can be combined to second-order partial

di�erential equations.

1

��
r
2
B +r� (v �B) = 0 (9)

The ux density has components in x and y directions,

the eddy currents are owing in z direction and the con-

ductive part is moving in x direction.

B =

0
@ Bx

By

0

1
A ;J =

0
@ 0

0

Jz

1
A ;v =

0
@ vx

0

0

1
A (10)

Bx, By and Jz are functions of x and y.

Combining equations 9 and 10 leads to:

@2Bx

@x2
+

@2Bx

@y2
� ��vx

@Bx

@x
= 0 (11)

@2By

@x2
+

@2By

@y2
� ��vx

@By

@x
= 0 (12)

When the solution for one direction of the ux density

�eld is found, the ux density of the other direction can

be derived from the relation r �B = 0 (conservation of

ux) which requires:

@Bx

@x
+

@By

@y
= 0 (13)

The magnetic ux density �eld is driven by the applied

magnetic �eld density B0. Hence, the solutions with the

same travelling wave dependence on x are assumed and

the ux density takes the form:

B(x; y) = ~B(y)eikx (14)

The equations 11 and 12 can be transformed to:

@2 ~Bx

@y2
� q2 ~Bx = 0 (15)

@2 ~By

@y2
� q2 ~By = 0 (16)

with q =
p
k2 + k��vx and with the general solutions:

~Bx = �
q

ik

�
aeqy � be�qy

�
(17)

~By = aeqy + be�qy (18)

The solution domain is divided into two regions: region

1 corresponding to the air gap where � = 0 and therefore

q = k and region 2, the moving conducting medium.

For region 1 the solutions are:

Bx1 = ieikx
�
a1e

ky
� b1e

�ky
�

(19)

By1 = eikx
�
a1e

ky + b1e
�ky
�

(20)

The depth of region 2 is assumed to be very large com-

pared with the penetration depth � (see equation 1).

Therefore, it can be assumed that the �eld density is

zero for y !1.

Bx2 = b2
q

ik
eikxe�qy (21)

By2 = b2e
ikxe�qy (22)

The constants a1, b1 and b2 can be calculated with the

boundary conditions at y = 0 and y = �. At y = 0 the

boundary conditions depend on the applied ux density

and at y = � the magnetic �eld values for both regions

must be equal.

By1(y = 0) = Ceikx (23)

By1(y = �) = By2(y = �) (24)

Bx1(y = �) =
1

�r
Bx2(y = �) (25)



From equations 23 - 25 a1, b1 and b2 can be calculated:

a1 = C

�
1�

q

�rk

�
e�k�

2
(26)

b1 = C

�
1 +

q

�rk

�
ek�

2
(27)

b2 = C
eq�


(28)

with  = cosh k�+ q
�rk

sinh k�.

5 Forces and Losses

To calculate the forces acting on the conducting medium,

Maxwell's stress tensor is used [4], [9].

Fx = �
1

�0

Z
s

BxByda (29)

Fy = �
1

2�0

Z
s

B2

y �B2

xda (30)

s is any closed surface surrounding the conducting body.

It is useful to choose the surface at y = � and to inte-

grate x from 0 to 2� and z from 0 to b, where b is the

length of the magnetic bearing (see �gure 1).

Fx =
ibU

�0

1X
n=1

CnCn

nn

qn � qn
�rkn

(31)

Fy =
bU

�0

1X
n=1

CnCn

nn

qnqn � �2rk
2
n

�2rk
2
n

(32)

Cn, qn and n are the conjugate complex values of Cn,

qn and . The subscript n refers to the n-th harmonic

of the applied ux density series.

The losses P can be calculated with:

P = Fxvx (33)

Figure 5 shows the increase of the drag force Fx and

the decrease of the levitational force Fy with increasing

velocity vx. Losses can be reduced with rotor materi-

als which have a low conductivity � and a high relative

permeability �r. For small values (e.g. �r < 1000) the

drag force increases drastically. In �gure 5 it can be

seen that the con�guration NSNS leads to a reduced in-

crease of the drag force compared with the con�guration

NNSS. The relative di�erence of the losses of these two

con�gurations is about 15% - 20%.
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Figure 5: Upper curves: levitation force Fy, lower

curves: drag force Fx.
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Figure 6: Losses P due to eddy currents inside the con-

ducting and moving body.

6 Cross Coupling

In the previous chapter, the magnetic forces have been

calculated for a simpli�ed rectangular geometry of the

rotor (see �gure 2). This model is su�cient for the calcu-

lation of the forces of radial magnetic bearings when the

ux density distribution in the bearing is symmetrical.

The forces calculated for the rectangular model can be

transformed to the cylindrical model. The resulting lev-

itation and drag forces acting on the rotor are zero but

the drag forces lead to a resulting drag torque. When the

rotor is excited the air gap and the ux density distribu-

tion are no longer symmetrical (see �gure 7). When, for

example, the ux density increases in one direction the

ux density in the opposite direction must decrease due

to the conservation of the ux. An excited rotor causes

an asymmetrical ux density distribution which leads

to di�erential forces. These forces cannot be calculated

with equations 29 - 32 and, therefore, it is necessary to



transform the equations into the coordinate system of

the rotor (see �gure 1).
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Figure 7: Di�erential ux excitation. Upper plot:

Fourier series, lower plot: applied ux density.

F �x =
1

�0

Z
s

BxBy sin (')da

+
1

2�0

Z
s

�
B2

y �B2

x

�
cos (')da (34)

F �y = �
1

�0

Z
s

BxBy cos (')da

+
1

2�0

Z
s

�
B2

y �B2

x

�
sin (')da (35)

with ' = 2�x=U = x=R. The integrals of equation 34

and 35 can be solved in asimilar fashion to the calcula-

tions of the previous chapter. As mentioned before, an

excitation of the rotor causes an asymmetrical ux den-

sity distribution. For correct calculations the variable

air gap must be considered. The excited rotor geome-

try can be transformed with the Moebius-transformation

into a new imaginary geometry system with two concen-

tric circles. The partial di�erential equations 15 and 16

have to be transformed also. The additional distortion

factors lead to equations which can only be solved by

numerical methods. Numerical calculations show that

the forces caused by the excited rotor are mainly caused

by a change of the ux density distribution. The inu-

ence of the variable air gap is small and, therefore, it

can be neglected (assuming �� U=16). The simpli�ed

geometry shown in �gure 2 will represent a system with

a medium air gap.

F �x =
bU

2�0

1X
n=1

�
CnCn+1

nn+1

�rkn + qn

�rkn

�rkn+1 � qn+1
�rkn+1

+
Cn+1Cn

n+1n

�rkn+1 � qn+1

�rkn+1

�rkn + qn
�rkn

�
(36)

F �y =
ibU

2�0

1X
n=1

�
CnCn+1

nn+1

�rkn + qn

�rkn

�rkn+1 � qn+1
�rkn+1

�
Cn+1Cn

n+1n

�rkn+1 � qn+1

�rkn+1

�rkn + qn
�rkn

�
(37)

Figure 8 shows the basic behaviour of the forces F �x and

F �y depending on the velocity vx. The levitational force

of a magnetic bearing decreases slowly with increasing

speed. Contrary to the levitational force, the cross cou-

pling force, which is zero at standstill, increases with

increasing speed.
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Figure 8: Di�erential magnetic bearing forces F �x (solid

lines) and F �y (dashed lines). Upper plot: chang-

ing ux density distribution in x-direction, lower plot:

changing ux density distribution in y-direction, steps :

B̂0; 1:5B̂0; 2B̂0

7 Summary

This paper shows a model for eddy currents in an un-

laminated rotor, rotating inside a radial magnetic bear-

ing. Additionally to the levitational force, a drag force is

acting on the rotor which leads to a retardation torque.

When the rotor is excited the asymmetrical ux density

distribution causes resulting forces in the x and y di-

rections and, therefore, leads to a cross coupling. From

the analytical solution for the ux density, all of these

forces and the losses can be calculated. It is shown, that

the con�guration NSNS leads to lower losses than NNSS

which corresponds with measurements in [8].

8 Outlook

Most rotors for magnetic bearing applications are lami-

nated in order to reduce eddy currents. For some appli-

cations unlaminated rotors are used because the produc-

tion costs are lower and the material strength is higher.

The choice of the lamination thickness as well as its in-

uence on the eddy current losses is an important de-

sign problem. It is astonishing that the simple geometry

of laminated sheets leads to a di�cult electromagnetic



problem (see also [9]). One approach to model the mag-

netic �eld of radial magnetic bearings with laminated

sheets on the rotor is to use a time variant magnetic

�eld. This approach is used for transformers but it can-

not produce a drag force because the model consists nei-

ther of an eddy current ow nor a ux density distri-

bution in the z direction. Another approach is a two

dimensional Fourier approximation in the x and z di-

rections. This model describes only the problem of an

unlaminated rotor which is not in�nite in length. Con-

sidering the edge e�ects of radial bearings, the calculated

eddy current losses increase slightly whereas laminated

rotors have much smaller losses. The assuptions of this

model are only valid for large lamination thicknesses.

Hence, this model cannot be used for laminated rotors.

Both approaches cannot achieve an adequate model for

laminated rotors when eddy currents are caused by mov-

ing conducting material under an applied time invariant

magnetic �eld. It is unclear whether analytical solutions

can be found for this problem.
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