
A REAL-TIME OPERATING SYSTEM
DESIGNED FOR PREDICTABILITY AND RUN-TIME SAFETY

Roberto Brega
Institute of Robotics, ETH Zürich, Switzerland, brega@ifr.mavt.ethz.ch

ABSTRACT
Complex embedded machines are usually controlled by
an application software sitting on top of a real-time oper-
ating system. Thus, the safety issues involved do not
apply only to the mechanical structure or to the elec-
tronic circuitry, but also to the software that is responsi-
ble for an efficient run-time and predictable error-
handling. The single, least reliable, nonredundant piece
building the system, will undermine the overall reliabil-
ity of the whole machine.
This paper describes a real-time operating system
(XOberon) with deterministic and safe run-time behav-
ior, which is easy to program and to customize. XOberon
goes beyond the established concepts, like interrupt- or
priority-driven scheduling, bringing in new program-
ming paradigms, such as deadline-driven scheduling,
automatic storage reclamation, dynamic linking and
loading, memory protection, and off-line/on-line dura-
tion computation.

INTRODUCTION
The principal responsibility of a real-time operating sys-
tem (RTOS) can be summarized as that of producing
correct results while meeting predefined deadlines in
doing so. Therefore, the computational correctness of the
system depends on both the logical correctness of the
results it produces, and the timing correctness, i.e. the
ability to meet the deadlines of its computation [1].
Hard real-time (HRT) operating systems can be thought
as a particular subclass of RT systems, in which the lack
of adherence to the above mentioned deadlines may
result in a catastrophic system failure.
A RT application can be modeled as a set of cooperating
tasks. These tasks can be classified according to their
timing requirements, as hard real-time, and not real-time
(NRT). A HRT task is a task whose timely (and logically

correct) execution is labeled as critical to the operation
of the whole system. The deadline associated to a HRT
task is said to be a hard deadline. Consequently, it is
assumed that missing a hard deadline can result in a sys-
tem failure. NRT tasks are those tasks that exhibits no
real-time requirements (e.g. system maintenance tasks
running in the background).
Based on these observations we conclude that a RT oper-
ating system has to guarantee that each task can meet its
timing requirements. However, it is worth noting that, in
order to fulfill that responsibility, the objective of a RT
operating system cannot be just that of minimizing the
average response time of each application task; rather
the fundamental concern of a RT operating system is that
of being predictable [2, 3].

THE XOBERON/POWERPC RTOS
The XOberon/PowerPC hard real-time operating system
is a rapid application development (RAD) tool for com-
plex mechatronic products, developed at the Institute of
Robotics (IfR), Swiss Federal Institute of Technology,
Zürich (ETHZ), in order to address the aforementioned
issues [4]. XOberon is loosely based on the Oberon
Operating System, and it is written in the object-oriented
programming language Oberon-2. Both the Oberon Sys-
tem and the programming language Oberon-2 were
developed at the Institute for Computer Systems, ETH,
Zürich, Switzerland. XOberon runs natively on VME
boards based on the PowerPC microprocessor architec-
ture [5]. Older versions of the operating system support
Motorola 680x0 processors, too.
The core of XOberon is composed of: the real-time
scheduler, the memory manager, the heap manager, the
dynamic linking-loader, the communication support and
the drivers toolbox. On top of them, several packages are
available, like internet servers, board support packages,

the run-time performance monitor, etc. Hereafter the
most important aspects of some of these components
will be highlighted.

Scheduler
The real-time scheduler embodies the hard real-time
nature of XOberon and defines the interface to the real-
time system for use by the application programmer.
XOberon features a deadline-driven scheduler with
admission testing, which presents to the application pro-
grammer an object-oriented abstraction layer for model-
ing user tasks. Each task fed to the scheduler must
provide: a run method, an exception-handler method , a
duration and a deadline, and, for repetitive tasks, a
period. The duration is defined as the amount of fore-
ground non–pre-empted processor-time needed to suc-
cessfully complete and retire the longest execution path
of the task’s code. The time needed to fire the exception
handler must also be taken into account, when specify-
ing the duration. The deadline, which is part of the real-
time problem definition, is the latest point in time, when
logical correct results are considered usable. The period
is defined as the time interval between schedules.
Upon allocation, each task is tested for admission by the
scheduler. A positive answer, states that the operating
system will be able to guarantee that the task being fed
to the kernel, along with its exception handlers, will be
started, executed and retired before the expiration of the
deadline (i.e. the timing correctness is guaranteed), as
long as the specified duration is correct. The scheduler
constantly monitors the processing time being used by
each task, and compares it to the allocated slot, in order
to ensure that ill-behaved tasks cannot undermine the
stability of well-behaved ones. Should the specified
duration be violated, the operating system will trap the
unfair task: the task will be blocked, removed from the
scheduling pools, and a default exception handler will be
fired. The same way, if for some reason, independent on
duration violations, a deadline cannot be respected, the
relevant task will be trapped with a deadline violation
exception. A possible constellation yielding to such a
condition, could be a real-time task that sleeps for some
time (i.e. remains in the background, with no influence
on its duration) and, while asleep, misses its deadline.
The process manager implements a static, shortest-dead-
line-first scheduling algorithm. The pool of real-time
tasks is statically sorted according to the specified dead-
lines. The first one, i.e. the one with the shortest dead-
line, will be set for execution by the scheduler. This task
will remain in the foreground, until its normal execution
cycle completes, or when a task characterised by a
shorter deadline is been activated by the occurrence of
some event, like the expiration of a waiting period or the
user intervention. Other, more dynamic algorithms (like
shortest-slacktime-first) have also been taken into con-

sideration, but they have been rejected (at the moment)
because the higher overhead involved in the continuous
sorting of the tasks pool doesn’t pay back in a substan-
tially higher processor utilisation [1].
The scheduler is also responsible for dispatching non–
real-time tasks, hereafter referred to as threads. Since
their calculations can be delivered anytime, threads are
brought to the foreground only when no other real-time
task is pending, waiting for being dispatched.
Threads have a priority associated with them; this value
is used for deciding their dispatching order. The threads
dispatcher, being pluggable and hot-swappable, can
implement many scheduling algorithms: round-robin,
top-sorting, priority-driven with priority aging, etc. The
user can choose which scheduler is more appropriate for
his application, or implement a custom-tailored one.
The scheduler incorporates the message passing and syn-
chronization primitives. The model being implemented
is congruent to the one present in the Java programming
language: the Object class. This class, dubbed Synchro-
nizer in the XOberon naming-scheme, fulfills the role of
both an inter-process communication signal and a
mutual exclusion primitive. Being an extensible class,
new fields can be added to the standard ones, thus acting
as a good synchronization and signaling bus between
tasks. The mutual exclusion monitor is reentrant: a task
holding a lock, can reenter the same critical section with-
out incurring in a deadlock. The task scheduler is also
responsible for tracking the correct use of the Synchro-
nizers. Particular care has been devoted for avoiding
unbalanced entering and exiting from a mutual exclusive
region, and for releasing locked Synchronizers upon
trapping of a task blocking some data-structures.
The scheduler also incorporates meta-information (infor-
mation about information) for querying the various
tasks’ states, scheduling-lags, stack-frames, measured
timings, etc. These capabilities are used by the outer-
core modules, and they are available to the application
programmer.

Memory Manager
The incorrect use of the available physical memory usu-
ally results in severe reliability problems in the operating
system and in the applications. Micro-kernel based or
Unix like operating systems typically solve this problem
by implementing some memory-protection schemes.
The main idea relies on using the available hardware
support in order to let programs run in separate address
spaces, communicating with each other via inter-process
communication signals. This way, if an ill-behaved
application has a memory-related fault (in the computer
jargon, it crashes), only the offending application will be
shutdown, without interfering with the operating system
or with parallel running threads.
Unfortunately, allowing multiple address spaces presents

some severe disadvantages, which are not tolerable on a
real-time system. In fact, the overhead involved upon
context-switch is huge; moreover very tight scheduling
time-slices can contribute to the thrashing of the
involved hardware resources, like data and instruction
caches, translation-looakaside buffers and branch predic-
tion tables [6].
Most of the memory related errors result from illegal
pointer operations, such as noninitialized references to
data structures, faulty pointer arithmetic, etc. Since the
Oberon-2 programming language, like the Java program-
ming language, is strong-typed and does not allow an
explicit handling of pointer references, many problems,
typical for the “c” programming language are caught at
compile-time, and thus completely avoided. Neverthe-
less, there are some memory-related errors, which can be
solved more efficiently during run-time, by using the
paged memory management of modern processor archi-
tectures, like the PowerPC.
XOberon makes heavy and pervasive use of paging. The
available physical memory is mapped, page by page,
into the virtual address space (232 bytes). Several, fixed-
size chunks are assigned for the different uses. Building
on this scheme, the Memory Manager reserves virtual
blocks to the module loader, to the system-heap, to the
stacks-pool, to the DMA range, and for the memory-
mapped input/output. Each block is handled differently,
according to its characteristics and is tuned for optimal
cache-performance.
Using this memory management scheme, XOberon can
handle the following memory-related conditions.

• Nil-checks (noninitialized pointer references) are
resolved at run-time and not with code explicitly
emitted by the compiler.

• A Stack-overflow can be safely trapped without
compiler intervention or run-time overhead. Yet,
stacks are allowed to dynamically grow (for non–
real-time tasks) if there is such a need, hence allow-
ing a minimal initial stack-size, with a consequently
better memory utilisation.

• The DMA ranges can be marked as noncacheable,
simplifying the handling of direct memory accesses
for drivers writers.

• References to unloaded modules (dangling code or
data pointers) can be easily trapped without having
to risk an access on unknown memory blocks.

The proposed mechanism delivers a high degree of reli-
ability and overall safety to the system. Moreover, the
already minimal and real-time compatible run-time over-
head is more than compensated by the speed increase
gained by the optimal tuning of the cache behavior on
the different memory blocks.

Heap Manager
Many programming languages allow the programmer to
allocate and reclaim memory for data whose lifetimes
are not determined by their lexical scope. Such data is
said to be dynamically allocated. The area of memory
where such objects live is called the heap [7].
In most systems, the management of heap memory is
done by the application programmers, i.e. they must
explicitly free heap memory at some point in the pro-
gram by calling a “free” or “dispose” routine. Unfortu-
nately, the manual reclamation of heap blocks is often
unsatisfactory, because the lifetime of many data struc-
tures cannot be determined before execution. This is
especially true for object-oriented languages where the
goal of good design is achieved with the encapsulation
of abstractions into objects that communicate through
published interfaces. Hence, programmer-controlled
storage management massively inhibits modular pro-
gramming. Moreover, a lot of run-time errors usually
hide inside missing or ill-placed disposes, the former
resulting in memory leaks, the latter in dangling point-
ers. A safer solution is to let a system-wide daemon,
namely a Garbage Collector, take care of the automatic
reclamation of data, which is no longer referenced by
running programs.
The implemented garbage collection scheme addresses
the typical problems posed by the very high require-
ments of a real-time operating system.
First of all, given the real-time pre-emptive context-
switch taking place in the scheduler, the garbage collec-
tor must ensure that high priority tasks can still be com-
pleted in a guaranteed amount of time, that is, without
violating the specified time-constraints. This is done
with an interruptible Mark-and-Sweep algorithm [8], by
means of the collaboration between the garbage collector
and the running tasks (referred in the literature as muta-
tor).
A further important precondition to the safe garbage rec-
lamation is the careful detection of pointers. Compile-
time information, brought to the run-time system by the
linking-loader, along with an heuristic algorithm [9]
ensure that each pointer can be treated as such, and thus
will not be left unseen.
The last issue is about being able of running in very tight
memory conditions, i.e. when the amount of free mem-
ory tends towards zero. The frequently used pointer-
reversal algorithm is memory efficient, but it is not
usable in an incremental garbage collector that can be
preempted by other processes; in fact, if the pointer-
reversal is interrupted before the pointers are restored,
the mutator cannot properly use these data structures. A
more trivial algorithm for marking the live objects
employs a recursive marking procedure. Unhappily,
recursive procedure calls are not a practical method for
marking data structures, being neither time- nor space-

efficient, and may cause the system stack to overflow.
XOberon improves performance and memory utilization
by replacing recursive calls, iterating on an auxiliary
stack, which is used to record the addresses of the heap-
objects. The allocation procedure pushes the address of
each dynamically allocated block on this stack. In this
way, the garbage collector can be effective in abnormal
memory conditions, still providing adequate perfor-
mance.
The implemented garbage collector runs as a non–real-
time task with variable priority: the less memory is avail-
able, the more prioritized will be the collector. Consider-
ing that the real-time tasks are inhibited by the compiler
from allocating dynamic data (the allocation procedure
being unbound in space and time), it is guaranteed that
the garbage collector will always get adequate run-time
for trying to reclaim unused data.
The proposed solution has proved to be very efficient in
detecting nonreferenced objects and collecting them. It
features high reliability and good performance, and con-
tributes to increasing the overall run-time safety of the
system. It is very well suited as the default garbage col-
lector for a Java run-time, too.

Dynamic Linking and Loading
Modern software techniques require software compo-
nents to have cleanly defined interfaces, in order to grant
better inter-operability, ease of specification, and mainte-
nance. Oberon programs are written as separate compila-
tion unities called modules. Modules have an interface
that is checked against violations during compile-time
(for source code) and during linking-time (for object
files).
In addition of boosting the overall safety and modularity
of the run-time, compilation modules allow for a far
shorter edit-compile-run cycles. The code emitted by the
very fast, two-pass Oberon-2 compiler is transmitted
through an ethernet link to the target machine, where the
relatively small modules (usually less than 32 kilobytes
in size) are loaded, then checked for version-consistency
and eventually dynamically linked.
A linked module can be safely removed from the run-
ning system, if no other module is importing it. This is
accomplished by a simple reference counting strategy. In
the always possible case, where an implicit reference is
held to some parts of the code or the data structures of a
removed module, the memory manager blocks those
dangling addresses, by trapping the ill-behaving task and
firing a standard exception handler, as explained in the
chapter “Memory Manager”.
The module loader contributes to an enhanced compos-
ability and customizing of the system, while ensuring a
high degree of run-time safety and reliability.

Real-Time Code Analyzer/Profiler
The most difficult part, when defining a real-time task, is
the definition of the duration value. Whereas the dead-
line is part of the real-time problem scope, the duration
is dependent on the underlying hardware system, this
being made up of a processor, a memory subsystem, and
peripheral components [10, 11].
One possible solution could rely in the measurement of
the task’s run-time with some system-wide clock, in
order to have a reference duration value, which could
then later be tuned. Of course, this is not a safe solution,
since what is being measured is not the longest execution
path, but a particular one. Moreover, a later intervention
of some other processes could have dramatic influences
in the cache performance, invalidating the information
collected during development.
XOberon tries to solve this problem by providing a tight
integration between the compiler and the run-time envi-
ronment. The compiler profiles the longest path of a
given task, by using the available information on the
underlying system architecture. This information is fed
to the target system, which continuously monitors and
tunes the durations, by exploiting the PowerPC604 Per-
formance Monitor [12, 13]. The Performance Monitor is
a particular unit of the PowerPC604 microprocessor
architecture, which constantly samples low-level, pro-
cessor-related data, like the amount of L1-hits, the num-
ber of pipeline stalls, the frequency of mispredicted
branches, and many other architectural events. This
information is used for correcting the profiled durations
fed to the run-time system towards a worst case, that
more approaches real-world values.

Driver Support
The XOberon Driver Support follows two important
concepts: the first one is about writing driver software,
which exposes its functionality through published inter-
faces to an object-oriented database; the second aspect
stresses the reliability and ease of implementation of a
polling solution over plain interrupt handling.
The interface allows the on-the-fly configuration of
peripheral components, like serial links, digital input and
outputs, analog outputs, counters and so on. The user
application will only need to reference driver objects –
by name – in the database, decoupling the application
from the used drivers. Consequently, a change in the
hardware system will only need a reconfiguration of the
drivers’ database, without requiring the application to be
neither modified nor re-compiled.
The XOberon driver implementation guidelines suggest
the use of polling over interrupts. Although the advan-
tages of interrupts are clear (lower overhead, shorter
response times), the polling solution is more determinis-
tic, allows for guaranteed response times and it’s easier
to write and maintain.

PERFORMANCE
Although raw speed was not one of the design goals,
these being simplicity and safe run-time environment,
the performance degree reached by XOberon/PowerPC
is astounding. The scheduler, which is responsible for
the hard deadlines, must stop a process, save its register-
set, choose another candidate from the scheduling pools,
and bring it in the foreground. The scheduler repeats
these steps ten times every millisecond, or with a 10 kHz
frequency. Such a scheduling frequency allows the pro-
gramming of high performance controllers, which other-
wise would have been hooked to an interrupt vector-
entry, bringing complexity and taking determinism away,
or by utilizing a custom developed hardware, which
would not be easily maintainable or portable.

Scheduling Overhead
It is quite difficult to quantify the overhead brought by
the scheduler, since it scales with the number of installed
tasks. Anyway, after boot-strapping, the system overhead
is less than one percent of the maximum available pro-
cessor power on a MVME1600 board, with a
PowerPC604 clocked at 100 MHz. At this point, the sys-
tem is scheduling service-maintenance routines, along
with communication drivers and internet daemons. The
overhead scales linearly for more processes, with an
increment of one percent in the worst case (this being a
task that exhibits floating-point use with a 100 microsec-
onds deadline).
As an example, a complex parallel machine (Hexaglide)
with seven hard real-time, user-installed processes with a
300 microseconds deadline, and some non–real-time
processes, brings the scheduling overhead close to five
percent.
In the same way, the overhead decreases linearly with
better PowerPC implementations, as on the MVME2600
board, powered by a 200 MHz PowerPC604e (Sirocco),
or on the new MVME2300 board, with a 300 MHz
PowerPC604ev (Mach5). In the first case, the scheduling
overhead after boot-strapping drops to 0.4 percent.
How can XOberon achieve such a performance? The
answer can be found in the actual scheduler implementa-
tion, which has been optimized by taking into account
the deep knowledge the scheduler has about the running
tasks, and the underlying processor architecture.
The scheduler has been optimized as follows:

• Hand-tuned assembler code, with branch prediction
hints, careful cache tuning, instruction scheduling,
stack pre-fetching, etc.

• Optimizations in the context-switching, on a per–
process-base

• Fine-tuned memory management through paging
• Real-world, on-chip performance measurements for

pipeline tuning

Instead of saving the full processor state upon task
switch, XOberon uses the same object-oriented abstrac-
tions presented to the programmer, in order to choose an
optimal way for saving (and restoring) this particular
task’s context. Because of this, some processes are con-
text-switched faster than others, according to the process
state and characteristics.

Floating-Point Performance
The raw floating-point performance of XOberon is
remarkable, thanks to the fast PowerPC floating-point
units. Their use has also being tuned for the most specu-
lative execution mode. This computational power allows
newer applications to be built, by calculating complex
kinematics and dynamic models in real-time, with dead-
lines shorter than one millisecond, eventually allowing
to direct control motors and actuators at their mechanical
limits.
For example, the Hexaglide milling machine [14], is
being run on a PowerPC604@100Mhz, with the follow-
ing hard real-time tasks, amongst others (system mainte-
nance or not relevant):

• PD-controller and velocity observer: period 300
microseconds, 130 fp-multiplies, and 120 fp-adds

• Path-planner: period 300 microseconds, 110 fp-mul-
tiplies, and 100 fp-adds

• Dynamic pre-controller: period 2.5 ms, 1720 fp-
multiplies, and 1750 fp-adds

• Adaptation of dynamic parameters: period 10 ms,
400 fp-multiplies, and 380 fp-adds

• Data miner, watchdog, security processes.

The system is loaded up to the 89.8 percent by the hard
real-time processes, with a 5.5 percent scheduling over-
head.
The floating-point performance of the PowerPC proces-
sor architecture opens new opportunities for intelligent,
efficient, simpler software-controlled mechatronic appli-
cations.

APPLICATIONS
XOberon/PowerPC is been successfully used in many
mechatronic projects developed at the Institute of Robot-
ics, ETH Zürich, Switzerland, and in other universities.
RoboJet, Hexaglide and MOPS are the most representa-
tive.
Robojet [14] is a hydraulically actuated manipulator
used in the tunneling construction work. Its task consists
of spraying liquid concrete on the walls of new tunnels
using a jet as its tool. Its application software imple-
ments an automatic and human oriented control system.
This new tool enables the operator to manipulate the jet
in various modes, from purely manual actuation of sin-
gle joints to fully automated spraying of selected tunnel
areas. The calculation of the redundant inverse kinemat-

ics and the closed-loop control of the eight hydraulic
actuators is performed by the control system.
Hexaglide [15] is a six DOF parallel mechanism similar
to the Stewart platform. It is the prototype of a new
machine tool, which is being built at the Institute of
Machine Tools and Manufacturing (IWF), together with
the Institute of Robotics (IfR), ETH Zürich.
MOPS [16] is a service robot that picks up boxes with
incoming mail at the ground floor of the IfR’s five floor
building, delivering them to the secretaries’ offices, sub-
sequently bringing back the outgoing mail to the ground
floor station. Its navigation is based on the recognition of
natural landmarks, which are compared to data of the
building layout stored on the robot’s processor.

CONCLUSIONS
The charter of XOberon is about providing a reliable,
real-time capable run-time environment, with safety
aspects guaranteed by the operating system. XOberon
delivers to non–computer-scientists a valuable RAD tool
for implementing embedded applications, which can
then be deployed in high-demanding environments,
requiring safety, determinism, and ease of maintenance.
Nevertheless, the kernel schedules tasks with a 10 kHz
rate, with an overhead of less than 1 percent on a
PowerPC604 hardware. Moreover, the size of the com-
plete XOberon operating system (core, network servers
and clients) is less than 1 MB ROM and needs 1.5 MB
RAM on the target.
The system prototype is currently being used as the soft-
ware building block of many mechatronic projects devel-
oped at the Institute of Robotics, ETH Zürich,
Switzerland, and in other universities.

ACKNOWLEDGEMENTS
I would like to thank the following people, who contrib-
uted with ideas, programming, or testing to the
XOberon/PowerPC project: Prof. G. Schweitzer, Dr. S.J.
Vestli, R. Hüppi, M. Honegger, G. Bianchi, M. Corti.

AVAILABILITY
Further information can be found at the Homepage of
the Institute of Robotics: “http://www.ifr.mavt.ethz.ch”,
Research — Real-Time Systems.
The XOberon real-time operating system supports
Motorola VME boards based on the 680x0 and PowerPC
processor architectures. The development environment is
based on Oberon System 3, and it is available for
Windows95, WindowsNT and Solaris hosts.
XOberon/680x0 is available, free of charge, with source
code, at “ftp://clermont.ethz.ch/pub/XOberon/”.
XOberon/PowerPC is available for evaluation on a Win-
dows CD-ROM.

REFERENCES

1. F. Panzieri, R. Davoli, Real Time Systems: A Tuto-
rial, Laboratory for Computer Science, University
of Bologna, Italy, Technical Report UBLCS-93-22,
October 1993

2. J. A. Stankovic, K. Ramamritham, The Spring Ker-
nel: A new paradigm for real-time systems, IEEE
Software, Vol. 8, No. 3, May 1991

3. J. Mathai (edited by), Real-time Systems: Specifica-
tion, Verification and Analysis, Prentice Hall Inter-
national, 1996

4. D. Diez, S. J. Vestli, D'nia An Object Oriented Real-
Time System, Real-Time Magazine, 95/3, pp. 51-
54, March 1995

5. IBM, Motorola, PowerPC Microprocessor Family:
The Programming Environments, 1997

6. J. L. Hennessy, D. A. Patterson, Computer Architec-
ture: A Quantitative Approach, Second Edition,
Morgan Kaufmann Publishers Inc., 1996

7. R. Jones, R. Lins, Garbage Collection: Algorithms
for Automatic Dynamic Memory Management,
John Wiley & Sons Ltd., 1996

8. E. Dijkstra, On-the-fly Garbage Collection: An
Exercise in Cooperation, Communications of the
ACM, 1978

9. H.J. Böhm, Space Efficient Conservative Garbage
Collection, ACM SIGPLAN PLDI 93, Albuquerque

10. P.G. Emma, Understanding some simple processor-
performance limits, IBM Journal of Research and
Development, Vol. 41, No. 3, 1997

11. N. Jouppi, David Wall, Available Instruction-Level
Parallelism for Superscalar and Superpipelined
Machines, Digital WRL Research Report 89/7

12. J. M. Anderson et Al, Continuous profiling: Where
have all the cycles gone?, Proc. 16th SOSP, 1997,
ACM SiGOPS

13. F.E. Levine, C. P. Roth, A programmer's view of
performance monitoring in the PowerPC micropro-
cessor, IBM Journal of Research and Development,
Vol. 41, No. 3, 1997

14. M. Honegger, G. Schweitzer., O. Tschumi, F.
Amberg, Vision Supported Operation of a Concrete
Spraying Robot for Tunneling Work, Proc. M2VIP,
Toowoomba Australia, 1997

15. M. Honegger, A. Codourey, E. Burdet, Adaptive
Control of the Hexaglide, a 6 dof Parallel Manipula-
tor, Proc. ICRA'97, Albuquerque USA, 1997

16. S.J. Vestli, N. Tschichold-Gürman, MOPS, A sys-
tem for mail distribution in office type buildings,
Service Robots Journal Vol. 2 No. 2, 1996

